Instrument AI Agents

Learn how to manually instrument your code to use Sentry's Agents module.

With Sentry AI Agent Monitoring, you can monitor and debug your AI systems with full-stack context. You'll be able to track key insights like token usage, latency, tool usage, and error rates. AI Agent Monitoring data will be fully connected to your other Sentry data like logs, errors, and traces.

As a prerequisite to setting up AI Agent Monitoring with Python, you'll need to first set up tracing. Once this is done, the Python SDK will automatically instrument AI agents created with supported libraries. If that doesn't fit your use case, you can use custom instrumentation described below.

The Python SDK supports automatic instrumentation for some AI libraries. We recommend adding their integrations to your Sentry configuration to automatically capture spans for AI agents.

For your AI agents data to show up in the Sentry AI Agents Insights, two spans must be created and have well-defined names and data attributes. See below.

Describes AI agent invocation.

  • The spans op MUST be "gen_ai.invoke_agent".
  • The span name SHOULD be "invoke_agent {gen_ai.agent.name}".
  • The gen_ai.operation.name attribute MUST be "invoke_agent".
  • The gen_ai.agent.name attribute SHOULD be set to the agent's name. (e.g. "Weather Agent")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.request.available_toolsstringoptionalList of objects describing the available tools. [0]"[{\"name\": \"random_number\", \"description\": \"...\"}, {\"name\": \"query_db\", \"description\": \"...\"}]"
gen_ai.request.frequency_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.max_tokensintoptionalModel configuration parameter.500
gen_ai.request.messagesstringoptionalList of objects describing the messages (prompts) sent to the LLM [0], [1]"[{\"role\": \"system\", \"content\": [{...}]}, {\"role\": \"system\", \"content\": [{...}]}]"
gen_ai.request.presence_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.temperaturefloatoptionalModel configuration parameter.0.1
gen_ai.request.top_pfloatoptionalModel configuration parameter.0.7
gen_ai.response.tool_callsstringoptionalThe tool calls in the model’s response. [0]"[{\"name\": \"random_number\", \"type\": \"function_call\", \"arguments\": \"...\"}]"
gen_ai.response.textstringoptionalThe text representation of the model’s responses. [0]"[\"The weather in Paris is rainy\", \"The weather in London is sunny\"]"
gen_ai.usage.input_tokens.cachedintoptionalThe number of cached tokens used in the AI input (prompt)50
gen_ai.usage.input_tokensintoptionalThe number of tokens used in the AI input (prompt).10
gen_ai.usage.output_tokens.reasoningintoptionalThe number of tokens used for reasoning.30
gen_ai.usage.output_tokensintoptionalThe number of tokens used in the AI response.100
gen_ai.usage.total_tokensintoptionalThe total number of tokens used to process the prompt. (input and output)190
  • [0]: Span attributes only allow primitive data types (like int, float, boolean, string). This means you need to use a stringified version of a list of dictionaries. Do NOT set [{"foo": "bar"}] but rather the string "[{\"foo\": \"bar\"}]".
  • [1]: Each message item uses the format {role:"", content:""}. The role can be "user", "assistant", or "system". The content can be either a string or a list of dictionaries.

Copied
import sentry_sdk

sentry_sdk.init(...)

# some example agent implementation for demonstration
my_agent = MyAgent(
    name="Weather Agent",
    model_provider="openai",
    model="o3-mini",
)

with sentry_sdk.start_span(
    op="gen_ai.invoke_agent",
    name=f"invoke_agent {my_agent.name}",
) as span:
    # set data about LLM and agent
    span.set_data("gen_ai.operation.name", "invoke_agent")
    span.set_data("gen_ai.system", my_agent.model_provider)
    span.set_data("gen_ai.request.model", my_agent.model)
    span.set_data("gen_ai.agent.name", my_agent.name)

    # run the agent
    result = my_agent.run()

    # set agent response
    # we assume result.output is a dictionary
    # type of `gen_ai.response.text` needs to be a string
    span.set_data("gen_ai.response.text", json.dumps([result.output]))

    # set token usage
    # we assume the result includes the tokens used
    span.set_data("gen_ai.usage.input_tokens", result.usage.input_tokens)
    span.set_data("gen_ai.usage.output_tokens", result.usage.output_tokens)

This span represents a request to an AI model or service that generates a response or requests a tool call based on the input prompt.

  • The span op MUST be "gen_ai.{gen_ai.operation.name}". (e.g. "gen_ai.chat")
  • The span name SHOULD be {gen_ai.operation.name} {gen_ai.request.model}". (e.g. "chat o3-mini")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.request.available_toolsstringoptionalList of objects describing the available tools. [0]"[{\"name\": \"random_number\", \"description\": \"...\"}, {\"name\": \"query_db\", \"description\": \"...\"}]"
gen_ai.request.frequency_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.max_tokensintoptionalModel configuration parameter.500
gen_ai.request.messagesstringoptionalList of objects describing the messages (prompts) sent to the LLM [0], [1]"[{\"role\": \"system\", \"content\": [{...}]}, {\"role\": \"system\", \"content\": [{...}]}]"
gen_ai.request.presence_penaltyfloatoptionalModel configuration parameter.0.5
gen_ai.request.temperaturefloatoptionalModel configuration parameter.0.1
gen_ai.request.top_pfloatoptionalModel configuration parameter.0.7
gen_ai.response.tool_callsstringoptionalThe tool calls in the model's response. [0]"[{\"name\": \"random_number\", \"type\": \"function_call\", \"arguments\": \"...\"}]"
gen_ai.response.textstringoptionalThe text representation of the model's responses. [0]"[\"The weather in Paris is rainy\", \"The weather in London is sunny\"]"
gen_ai.usage.input_tokens.cachedintoptionalThe number of cached tokens used in the AI input (prompt)50
gen_ai.usage.input_tokensintoptionalThe number of tokens used in the AI input (prompt).10
gen_ai.usage.output_tokens.reasoningintoptionalThe number of tokens used for reasoning.30
gen_ai.usage.output_tokensintoptionalThe number of tokens used in the AI response.100
gen_ai.usage.total_tokensintoptionalThe total number of tokens used to process the prompt. (input and output)190
  • [0]: Span attributes only allow primitive data types. This means you need to use a stringified version of a list of dictionaries. Do NOT set [{"foo": "bar"}] but rather the string "[{\"foo\": \"bar\"}]".
  • [1]: Each message item uses the format {role:"", content:""}. The role can be "user", "assistant", or "system". The content can be either a string or a list of dictionaries.

Copied
import sentry_sdk

sentry_sdk.init(...)

# some example implementation for demonstration
my_ai = MyAI(
    model_provider="openai",
    model="o3-mini",
    model_config={
        "temperature": 0.1,
        "presence_penalty": 0.5,
    }
)

with sentry_sdk.start_span(
    op="gen_ai.chat",
    name=f"chat {my_ai.model}",
) as span:
    # set data about LLM
    span.set_data("gen_ai.operation.name", "chat")
    span.set_data("gen_ai.system", my_ai.model_provider)
    span.set_data("gen_ai.request.model", my_ai.model)

    # set up messages for LLM
    max_tokens = 1024
    prompt = "Tell me a joke"
    messages = [
        {"role": "user", "content": prompt},
    ]

    # set chat request data
    span.set_data("gen_ai.request.message", json.dumbs(messages))
    span.set_data("gen_ai.request.max_tokens", max_tokens)
    span.set_data(
        "gen_ai.request.temperature",
        my_ai.model_config.get("temperature"),
    )
    span.set_data(
        "gen_ai.request.presence_penalty",
        my_ai.model_config.get("presence_penalty"),
    )

    # ask the LLM
    result = my_ai.messages.create(
        messages=messages,
        max_tokens=max_tokens,
    )

    # set response
    # we assume result.output is a dictionary
    # type of `gen_ai.response.text` needs to be a string
    span.set_data("gen_ai.response.text", json.dumps([result.output]))

    # set token usage
    # we assume the result includes the tokens used
    span.set_data("gen_ai.usage.input_tokens", result.usage.input_tokens)
    span.set_data("gen_ai.usage.output_tokens", result.usage.output_tokens)

Describes a tool execution.

  • The span op MUST be "gen_ai.execute_tool".
  • The span name SHOULD be "gen_ai.execute_tool {gen_ai.tool.name}". (e.g. "gen_ai.execute_tool query_database")
  • The gen_ai.tool.name attribute SHOULD be set to the name of the tool. (e.g. "query_database")
  • All Common Span Attributes SHOULD be set (all required common attributes MUST be set).

Additional attributes on the span:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.tool.descriptionstringoptionalDescription of the tool executed."Tool returning a random number"
gen_ai.tool.inputstringoptionalInput that was given to the executed tool as string."{\"max\":10}"
gen_ai.tool.namestringoptionalName of the tool executed."random_number"
gen_ai.tool.outputstringoptionalThe output from the tool."7"
gen_ai.tool.typestringoptionalThe type of the tools."function"; "extension"; "datastore"

Copied
import sentry_sdk

sentry_sdk.init(...)

# some example implementation for demonstration
my_ai = MyAI(
    model_provider="openai",
    model="o3-mini",
)

with sentry_sdk.start_span(op="gen_ai.chat", ...):
    #  .. some code ..
    result = my_ai.messages.create(
        messages=messages,
        max_tokens=1024,
    )
    # .. some code ..

# we assume the llm tells us to call a tool in the result
if my_should_call_tool(result):
    # we parse the result to know which tool to call
    tool = my_get_tool_to_call(result)

    with sentry_sdk.start_span(
        op="gen_ai.execute_tool",
        name=f"gen_ai.execute_tool {tool.name}"
    ) as span:
        # set data about LLM and tool
        span.set_data("gen_ai.system", my_ai.model_provider)
        span.set_data("gen_ai.request.model", my_ai.model)
        span.set_data("gen_ai.tool.type", "function")
        span.set_data("gen_ai.tool.name", tool.name)
        span.set_data("gen_ai.tool.description", tool.description)

        # run tool
        tool_result = my_run_tool(tool)

        # set tool result
        span.set_data("gen_ai.tool.output", json.dumps(tool_result))

A span that describes the handoff from one agent to another.

  • The spans op MUST be "gen_ai.handoff".
  • The spans name SHOULD be "handoff from {from_agent} to {to_agent}".
  • All Common Span Attributes SHOULD be set.

Copied
import sentry_sdk

sentry_sdk.init(...)

# some example agent implementation for demonstration
my_agent = MyAgent(
    name="Weather Agent",
    model_provider="openai",
    model="o3-mini",
)

with sentry_sdk.start_span(op="gen_ai.invoke_agent", ...):
    #  .. some code ..
    result = my_agent.run()
    #  .. some code ..


# we assume the llm tells us to handoff to another agent
if my_should_handoff(result):
    # we parse the result to know which agent to handoff to
    other_agent = my_get_agent(result)

    with sentry_sdk.start_span(
        op="gen_ai.handoff",
        name=f"handoff from {my_agent.name} to {other_agent.name}",
    ):
        # the handoff span just marks the handoff
        pass

    with sentry_sdk.start_span(op="gen_ai.invoke_agent", ...):
        #  .. some code ..
        other_agent.run()
        #  .. some code ..

Some attributes are common to all AI Agents spans:

Data AttributeTypeRequirement LevelDescriptionExample
gen_ai.systemstringrequiredThe Generative AI product as identified by the client or server instrumentation. [0]"openai"
gen_ai.request.modelstringrequiredThe name of the AI model a request is being made to."o3-mini"
gen_ai.operation.namestringoptionalThe name of the operation being performed. [1]"chat"
gen_ai.agent.namestringoptionalThe name of the agent this span belongs to."Weather Agent"

[0] Well-defined values for data attribute gen_ai.system:

ValueDescription
"anthropic"Anthropic
"aws.bedrock"AWS Bedrock
"az.ai.inference"Azure AI Inference
"az.ai.openai"Azure OpenAI
"cohere"Cohere
"deepseek"DeepSeek
"gcp.gemini"Gemini
"gcp.gen_ai"Any Google generative AI endpoint
"gcp.vertex_ai"Vertex AI
"groq"Groq
"ibm.watsonx.ai"IBM Watsonx AI
"mistral_ai"Mistral AI
"openai"OpenAI
"perplexity"Perplexity
"xai"xAI

[1] Well-defined values for data attribute gen_ai.operation.name:

ValueDescription
"chat"Chat completion operation such as OpenAI Chat API
"create_agent"Create GenAI agent
"embeddings"Embeddings operation such as OpenAI Create embeddings API
"execute_tool"Execute a tool
"generate_content"Multimodal content generation operation such as Gemini Generate Content
"invoke_agent"Invoke GenAI agent
Was this helpful?
Help improve this content
Our documentation is open source and available on GitHub. Your contributions are welcome, whether fixing a typo (drat!) or suggesting an update ("yeah, this would be better").